Table P-2: U.S Greenhouse Gas Inventory Source Categories Based on Tier 1 Approach | Table P-2: U.S Greenhouse Gas Inventory Source Categories Based on Tier 1 Approach | | | | | | | | | |--|------------------|---------------------|------------|-----------------------|-------------------------------|--|--|--| | | | 2000
Emissions | Key Source | | | | | | | | Direct | (Tg CO ₂ | Flag? | | | | | | | IPCC Source Categories | GHG | Eq.) | riag: | Criteria ^a | Comments | | | | | Energy | | • | | | | | | | | CO ₂ Emissions from Stationary Combustion - Coal | CO_2 | 2,030.1 | ✓ | L, T | All years | | | | | CO ₂ Emissions from Stationary Combustion - Oil | CO_2 | 640.7 | ✓ | L, T | All years | | | | | CO ₂ Emissions from Stationary Combustion - Gas | CO_2 | 1,162.9 | ✓ | L, T | All years | | | | | CO ₂ Emissions from Stationary Combustion – | CO_2 | + | | ŕ | , | | | | | Geothermal | | | | | | | | | | CO ₂ Emissions from Natural Gas Flaring | CO_2 | 6.1 | | | | | | | | Non-CO ₂ Emissions from Stationary Combustion | CH_4 | 7.5 | | | | | | | | Non-CO ₂ Emissions from Stationary Combustion | N_2O | 14.9 | | | | | | | | Mobile Combustion: Road & Other | CO_2 | 1,503.2 | ✓ | L, T | All years | | | | | Mobile Combustion: Road & Other | CH_4 | 4.1 | | | • | | | | | Mobile Combustion: Road & Other | N_2O | 55.7 | ✓ | L | All years | | | | | Mobile Combustion: Aviation | CO_2 | 196.5 | ✓ | L | All years | | | | | Mobile Combustion: Aviation | CH_4 | 0.2 | | | • | | | | | Mobile Combustion: Aviation | N_2O | 1.9 | | | | | | | | Mobile Combustion: Marine | CO_2 | 89.9 | ✓ | L, T | All years | | | | | Mobile Combustion: Marine | CH_4 | 0.1 | | | • | | | | | Mobile Combustion: Marine | N_2O | 0.6 | | | | | | | | Fugitive Emissions from Coal Mining & Handling | | 61.0 | ✓ | L, T | All years | | | | | Fugitive Emissions from Oil & Gas Operations | CH_4 | 138.2 | | L, T | All years | | | | | Indirect CO ₂ Emissions from CH ₄ Oxidation | CO_2 | 26.3 | | Ť | , | | | | | International Bunker Fuels ^b | Several | 101.2 | ✓ | Q | | | | | | Non-Energy Use of Fossil Fuels ^b | CO_2 | 409.6 | ✓ | Q | | | | | | Industrial Processes | | | | | | | | | | CO ₂ Emissions from Cement Production | CO_2 | 41.1 | ✓ | L | Level in 1991,
1993 - 1997 | | | | | CO ₂ Emissions from Lime Production | CO_2 | 13.3 | | | | | | | | CO ₂ Emissions from Other Industrial Processes | CO_2 | 107.6 | ✓ | L, T | All years | | | | | CH ₄ Emissions from Other Industrial Processes | CH_4 | 1.7 | | | | | | | | N ₂ O Emissions from Adipic Acid Production | N_2O | 8.1 | ✓ | T, Q | | | | | | N ₂ O Emissions from Nitric Acid Production | N_2O | 19.8 | | | | | | | | PFC Emissions from Aluminum Production | PFCs | 7.9 | ✓ | T | | | | | | SF ₆ Emissions from Magnesium Production | SF_6 | 4.0 | | | | | | | | SF ₆ Emissions from Electrical Equipment | SF_6 | 14.4 | ✓ | T, Q | | | | | | HFC, PFC, and SF ₆ Emissions from | Several | 7.4 | ✓ | Q | | | | | | Semiconductor Manufacturing | | | | | | | | | | Emissions from Substitutes for Ozone Depleting Substances | Several | 57.8 | ✓ | L, T | Level from 1997 - 2000 | | | | | HFC-23 Emissions from HCFC-22 Manufacture | HFCs | 29.8 | ✓ | L, T | Level in 1990, | | | | | A qui qui tumo | | | | | 1992, 1996, 1998 | | | | | Agriculture | CH | 122.0 | ✓ | тт | A 11 | | | | | CH ₄ Emissions from Enteric Fermentation in | CH_4 | 123.9 | • | L, T | All years | | | | | Domestic Livestock | CH | 27.5 | 1 | Ι. Ο | I1 : 1005 | | | | | CH ₄ Emissions from Manure Management | CH ₄ | 37.5 | | L, Q | Level in 1995 | | | | | N ₂ O Emissions from Manure Management | N_2O | 17.5 | | т | A 11 | | | | | Direct N ₂ O Emissions from Agricultural Soils | N_2O | 217.8 | | L | All years | | | | | Indirect N ₂ O Emissions from Nitrogen Used in | N_2O | 79.8 | • | L | All years | | | | | Agriculture | CII | | | | | | | | | CH ₄ Emissions from Rice Production | CH ₄ | 7.5 | | | | | | | | CH ₄ Emissions from Agricultural Residue Burning | CH ₄ | 0.8 | | | | | | | | N ₂ O Emissions from Agricultural Residue Burning | N ₂ O | 0.5 | | | | | | | | Waste | | | | | | |---|--------|-------|--------------|------|-----------| | CH ₄ Emissions from Solid Waste Disposal Sites | CH_4 | 203.5 | ✓ | L, T | All years | | CH ₄ Emissions from Wastewater Handling | CH_4 | 28.7 | | | | | N ₂ O Emissions from Wastewater Handling | N_2O | 8.5 | | | | | CO ₂ Emissions from Waste Incineration | CO_2 | 22.5 | \checkmark | T | | | N ₂ O Emissions from Waste Incineration | N_2O | 0.2 | | | | + Does not exceed 0.05 Tg CO₂ Eq. a Qualitative criteria. b Emissions from these sources not included in totals. Notes: Sinks (e.g., LUCF, Landfill Carbon Storage) are not included in this analysis. The Tier 1 approach for identifying key source categories does not directly include assessment of uncertainty in emissions estimates.